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ABSTRACT. For the compressible Euler equations, even when initial
data are uniformly away from vacuum, solutions can approach vac-
uum in infinite time. Achieving sharp lower bounds of density is cru-
cial in the study of Euler equations. In this paper, for the initial value
problems of isentropic and full Euler equations in one space dimen-
sion, assuming the initial density has positive lower bound, we prove
that density functions in classical solutions have positive lower bounds
in the order of O(1+ t)−1 and O(1 + t)−1−δ for any 0 < δ≪ 1, re-
spectively, where t is time. The orders of these bounds are optimal
or almost optimal, respectively. Furthermore, for classical solutions
in Eulerian coordinates (y, t) ∈ R × [0, T ), we show velocity u sat-
isfies that uy(y, t) is uniformly bounded from above by a constant
independent of T , although uy(y, t) tends to negative infinity when
gradient blowup happens, that is, when shock forms, in finite time.

1. INTRODUCTION

The compressible Euler equations in Lagrangian coordinates in one space dimen-
sion are as follows:

τt −ux = 0,(1.1)

ut + px = 0,(1.2)
(

1
2u

2 + e
)
t
+ (up)x = 0,(1.3)
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where ρ is the density, τ = ρ−1 is the specific volume, p is the pressure, u is the
velocity, e is the specific internal energy, t ∈ R

+ is the time, and x ∈ R is the
spatial coordinate. The compressible Euler equations are widely used, especially
in the gas dynamics. The classical solutions for the compressible Euler equations
in Lagrangian and Eulerian coordinates are equivalent [10].

For simplicity, in this paper, we only consider the case when the gas is ideal
polytropic, in which

(1.4) p = KeS/cvτ−γ with adiabatic gas constant γ > 1,

and
e =

pτ

γ − 1
,

where S is the entropy and K and cv are positive constants (cf. [9] or [16]). For C1

solutions, it follows that (1.3) is equivalent to the conservation of entropy [16]:

(1.5) St = 0,

hence
S(x, t) ≡ S(x,0) ≐ S(x).

If the entropy is constant, the flow is isentropic, and then (1.1) and (1.2)
become a closed system, known as the p-system:

τt −ux = 0,(1.6)

ut + px = 0,(1.7)

with

(1.8) p = Kτ−γ , γ > 1,

where, without loss of generality, we still use K to denote the constant in pressure.
We consider here the classical solutions of initial value problems for full Euler

equations (1.1), (1.2), (1.4), and (1.5) with initial data (u(x,0), τ(x,0), S(x,0))
and isentropic Euler equations (1.6)–(1.8) with initial data (u(x,0), τ(x,0)). We
consider the large data problem, which means that there is no restriction on the
size of the solutions.

Toward a large data global existence of BV solutions for the compressible Eu-
ler equations, which is a major open problem in the field of hyperbolic conserva-
tion laws, one of the main challenges is the possible degeneracy when density ap-
proaches zero. In fact, a solution loses its strict hyperbolicity as density approaches
zero. (See [1, 3, 14] for analysis and examples showing these difficulties.) There-
fore, the sharp information on the time decay of density lower bound is critical
in the study of compressible Euler equations. Furthermore, the time-dependent
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lower bound on density for classical solutions can be used to study the shock for-
mation and life-span of classical solutions.

The study of lower bound of density for classical solutions can be traced back
to Riemann’s pioneer paper [15] in 1860, in which he considered a special wave
interaction between two strong rarefaction waves. By studying Riemann’s con-
struction, Lipschitz continuous examples for isentropic Euler equations (1.6)–
(1.8) were provided in Section 82 in [9], in which the function minx∈R ρ(x, t)
was proved to decay to zero in an order of O(1 + t)−1 as t → ∞, while the initial
density is uniformly away from zero.1 A relative detailed discussion can be found
in [5], when the adiabatic constant γ = (2N + 1)/(2N − 1) with any positive
integer N .

At that time, there were many articles dealing with a time-dependent lower
bound on density for general classical solutions of isentropic Euler equations (1.6)–
(1.8) under the assumption that initial density is uniformly positive. For rarefac-
tive piecewise Lipschitz-continuous solutions, for any γ > 1, L. Lin first proved in
[13] that the density has lower bound in the order of O(1 + t)−1 by introducing
a polygonal scheme. A breakthrough for general classical solutions happens in a
recent paper [4], in which R. Pan, S. Zhu, and the author found a lower bound
of density in the order of O(1 + t)−4/(3−γ) when 1 < γ < 3. Using this result
together with Lax’s decomposition in [12], Pan, Zhu, and the author proved that
gradient blowup of u and/or τ happens in finite time if and only if the initial data
are forward or backward compressive somewhere. Next, for a general Lipschitz
continuous solution, Pan, Zhu, and the author in [5] improved the lower bound
on density from the order of O(1+ t)−4/(3−γ) to the optimal order O(1+ t)−1 by
introducing a polygonal scheme. The advantage of this method is that it works for
not only classical solutions but also Lipschitz continuous solutions. Moreover, the
scheme itself is of both analytical and numerical interest. However, the use of a
polygonal scheme makes the proof very complex, and the method seems difficult
to extend to full Euler equations. Another result on the lower bound of density for
classical solution in the order of O(1+ t)−1 when γ = 3 was given by A. Bressan2,
where the proof relies on the study of Riccati equations established by Lax in [12].

For non-isentropic full Euler equations, before this paper, the only polynomial
order upper bound of τ (lower bound of ρ) for a general classical solution was
established by Pan, Zhu, and the author in [4]. More precisely, we showed that
density has a lower bound in the order of O(1+ t)−4/(3−γ) when 1 < γ < 3.

In summary, before this paper, a lower bound of density in optimal order
O(1 + t)−1 was still not available for isentropic Euler equations with γ > 3 and
full nonisentropic Euler equations with γ > 1.

In this paper, we consider classical solutions of Cauchy problems of both
isentropic Euler equations and nonisentropic Euler equations. We assume that

1The author thanks Helge Kristian Jenssen who first pointed out this result to him.
2 The author became aware of this unpublished result through a private communication with A.

Bressan.
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initial density is uniformly positive, and give a short proof that density has time-
dependent lower bound in optimal orderO(1+t)−1 for isentropic Euler equations
(in Theorem 2.1) and in almost-optimal order O(1 + t)−1−δ for any 0 < δ < 1

3
for full Euler equations (in Theorem 2.3) in one space dimension, respectively.

Furthermore, for classical solutions, we prove that ux(x, t) for p-system and
ρεux for any 0 < ε < 1

4 for full Euler equations are uniformly bounded above by
a constant, respectively, although they are unbounded from below when gradient
blowup happens, that is, when shock forms. In Eulerian coordinates (y, t), we
show for full Euler equations that uy(y, t) is uniformly bounded above by a
constant.

The lower bounds of density achieved in this paper can give us more precise
estimates of life span of classical solution than those achieved in [4], and motivate
us in searching for a lower bound of density for BV solutions including shock
waves, which is a major obstacle in establishing large BV existence theory for Euler
equations. (Another interesting result on a time-dependent density lower bound
for isentropic Euler-Poisson equations can be found in [17] by E. Tadmor and D.
Wei.)

The rest of the paper is divided into three sections. In Section 2, we introduce
the main results and ideas in this paper. In Section 3, we prove Theorem 2.1 for
the p-system. In Section 4, we prove Theorem 2.3 for the full Euler equations.

2. MAIN RESULTS AND IDEAS

We first introduce some variables and notation. For Euler equations (1.1)–(1.5),
we use variables

(2.1) m ≐ eS/(2cv ) and η ≐
2
√
Kγ

γ − 1
τ−(γ−1)/2

to take the roles of S and τ. We denote the Riemann invariants

s ≐ u+mη and r ≐ u−mη,

respectively, and gradient variables

(2.2) α ≐ ux +mηx +
γ − 1
γ

mxη and β ≐ ux −mηx −
γ − 1
γ

mxη.

For the isentropic Euler equations (p-system) (1.6)–(1.8), whose solutions are
special solutions of full Euler equations (1.1)–(1.4) when we restrict our consider-
ation to the classical solution, the Riemann invariants are

(2.3) s = u+ η and r = u− η

and

(2.4) α = ux + ηx = sx and β = ux − ηx = rx .
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The main results in this paper are listed in Theorem 2.1 (for the p-system)
and Theorem 2.3 (for full Euler equations).

Theorem 2.1. Let (u(x, t), τ(x, t)) be a C1 solution of the isentropic Euler
equations (1.6)–(1.8) in the region (x, t) ∈ R × [0, T ), where T can be any finite
positive constant or infinity. Assume u(x,0), τ(x,0) > 0, ρ(x,0) = 1/τ(x,0),
α(x,0), and β(x,0) are all uniformly bounded, where α and β take the form in
(2.4).

Let M be an upper bound of α(x,0) and β(x,0), that is,

max
x∈R

{α(x,0), β(x,0)} < M.(2.5)

Then

max
(x,t)∈R×[0,T)

{α(x, t), β(x, t)} < M.(2.6)

This gives

(2.7) max
(x,t)∈R×[0,T)

{τt} = max
(x,t)∈R×[0,T)

{ux} < M

by (2.4) and (1.6). Hence, there exist positive constants M1 and M2 independent of T
such that

(2.8) min
x
ρ(x, t) ≥

M1

M2 + t
.

The key step in the proof of Theorem 2.1 is to prove (2.6). In fact, suppose
(2.6) is correct; then, by the conservation of mass (1.6) and (2.4), we can easily
prove (2.7):

(2.9) τt = ux =
1
2
(α+ β) < M,

which directly gives (2.8), together with the initial condition. To prove (2.6), we
need to study the characteristic decomposition established by Lax in [12]. The
key idea is to find an invariant domain on α and β.

One conclusion that we can draw from (2.5)–(2.6) is that although the vari-
ables α and β might increase along forward and backward characteristics, respec-
tively, the function maxx∈R{α(x, t), β(x, t)} is not increasing with respect to t,
which means that the maximum rarefaction of classical solution is not increasing.
This result can be easily seen from the fact that (2.6) is still correct if we change 0
in (2.5) into any t∗ ∈ (0, t).

Remark 2.2. Under assumptions in Theorem 2.1, in Eulerian coordinates
(y, t), we see that the inequality (2.7) gives that smooth solutions in the region
(y, t) ∈ R× [0, T ) satisfy

max
(y,t)∈R×[0,T)

{
uy

ρ

}
< M,
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where M is the constant given in (2.5), because ρux(x, t) = uy(y, t). (See [16]
for the transformation between Eulerian and Lagrangian coordinates.)

Since ρ is uniformly bounded above, which can be easily proved by the fact
that Riemann invariants s and r are initially bounded and are constant along
forward and backward characteristics, respectively, we know

max
(y,t)∈R×[0,T)

{uy} < M̄,

for some constant M̄ independent of T .

Then, we consider the full Euler equations.

Theorem 2.3. Let (u(x, t), τ(x, t), S(x)) be a C1 solution of full Euler equa-
tions (1.1)–(1.4) in the region (x, t) ∈ R× [0, T ). Here, T can be any finite positive
constant or infinity. Assume that initial data u(x,0), τ(x,0) > 0, ρ(x,0) =
1/τ(x,0), S(x), S′(x), α(x,0), and β(x,0), are all uniformly bounded, and that
total variation of S(x) is finite, where α and β satisfy (2.2). Then, for any

0 < ε <
1
4
,

there exists constant N0 independent of T such that

(2.10) max
(x,t)∈R×[0,T)

{ρε · τt} = max
(x,t)∈R×[0,T)

{ρε ·ux} < N0,

and there exist positive constants N1 and N2 independent of T such that

(2.11) min
x
ρ(x, t) ≥

(
N1

N2 + t

)1+δ

,

where δ = ε/(1− ε) > 0.

We first prove a result in Lemma 4.4 by taking a role much as in (2.6) in
Theorem 2.8. In fact, we find uniform bounds on gradient variables ρεα and
ρεβ, using which we can easily prove (2.10) by (2.2) and (1.1):

ρετt = ρ
εux =

1
2
(ρεα+ ρεβ) < Constant.

Then, we can show (2.11). The reason why we use ρεα and ρεβ instead of α
and β is to control the lower-order terms in the Riccati equations produced by the
varying entropy. The proof of Theorem 2.3 also relies on the uniform constant
upper bound of density established in [8] by R. Young, Q. Zhang, and the author
for classical solutions when total variation of initial entropy is finite.
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Remark 2.4. Under assumptions in Theorem 2.3, in Eulerian coordinates
(y, t), the inequality (2.7) gives that the classical solution that is in the region
(y, t) ∈ R× [0, T ) satisfies

max
(y,t)∈R×[0,T)

{
uy

ρ1−ε

}
< N0.

Since ρ is uniformly bounded above under assumptions in Theorem 2.3, we
know

max
(y,t)∈R×[0,T)

{uy} < N̄0,

for some constant N̄0 independent of T .
(See [16] for the transformation between Eulerian and Lagrangian coordi-

nates.) Since this result is a local result, we only need to assume that initial entropy
is locally BV.

One direct application of Theorem 2.3 is that one can use (2.11) to improve
the life-span estimates established in [4] when 1 < γ < 3, which depends on the
time-dependent lower bound of density. We leave this to the reader.

3. LOWER BOUND OF DENSITY FOR p-SYSTEM:
THE PROOF OF THEOREM 2.1

We first introduce the characteristic decompositions for the C1 solution of p-
system. For any classical solution of (1.6)–(1.8), the Riemann invariants s and r
in (2.3) are constant along forward and backward characteristics, respectively:

(3.1) ∂+s = 0 and ∂−r = 0

with
∂+ = ∂t + c ∂x and ∂− = ∂t − c ∂x

and wave speed

c =
√
−pτ =

√
Kγτ−(γ+1)/2.

Furthermore, gradient variables α = sx and β = rx defined in (2.4) satisfy the
following Riccati equations.

Proposition 3.1 ([2]). The classical solution in (1.6)–(1.8) satisfies

∂+α = k1{αβ−α
2},(3.2)

and

∂−β = k1{αβ− β
2},(3.3)

where

k1 ≐
(γ + 1)Kc
2(γ − 1)

η2/(γ−1),

where Kc is a positive constant given in (4.1). The function η > 0 is defined in (2.1).
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Equations (3.2) and (3.3) are special examples of Lax’s decompositions in [12]
for general hyperbolic systems with two unknowns. (See the detailed derivation of
(3.2) and (3.3) in [2].)

Remark 3.2. The idea for the proof of (2.6) can be seen from Figure 3.1.

α

β

0

(M,M)

FIGURE 3.1. Here, max{α,β} < M is an invariant domain.
Note that α (or β) might increase.

Before the proof, we note that ρ, η, c, and k1 are all bounded above by some
constants if assumptions in Theorem 2.1 are satisfied. This can be easily obtained
by (3.1), which says that s and r are constant along forward and backward char-
acteristics. As a consequence, ρ, η, c, and function k1 are all uniformly bounded
from above. Denote

(3.4) K1 ≐ max
(x,t)∈R×[0,T)

k1(x, t),

where K1 is a constant only depending on γ and the initial condition.

Proof of Theorem 2.1. We first prove (2.6) by contradiction. Without loss of
generality, assume that α(x0, t0) =M at some point (x0, t0). See Figure 3.2.

(x0, t0)

(x1, t1)

x

t

t2

FIGURE 3.2. Proof of Theorems 2.1 and 2.3.

Because wave speed c is bounded above, we can find the characteristic triangle
with vertex (x0, t0) and lower boundary on the initial line t = 0, denoted by Ω.

Then, we can find the first time t1 such that α = M or β = M in Ω. More
precisely,

max
(x,t)∈Ω, t<t1

(α(x, t), β(x, t)) < M,
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and α(x1, t1) = M or/and β(x1, t1) = M for some (x1, t1) ∈ Ω. Without loss
of generality, still assume α(x1, t1) = M . The proof for another case is entirely
the same. Let us denote the characteristic triangle with vertex (x1, t1) as Ω1 ∈ Ω;
then,

max
(x,t)∈Ω1, t<t1

(α(x, t), β(x, t)) < M,(3.5)

and α(x1, t1) = M . By the continuity of α, we could find a time t2 ∈ [0, t1) such
that,

(3.6) α(x, t) > 0, for any (x, t) ∈ Ω1 and t ≥ t2.

Next, we derive a contradiction. By (3.2), (3.4), and (3.5)–(3.6), along the
forward characteristic segment through (x1, t1) when t2 ≤ t < t1, we have

∂+α = k1{αβ−α
2} ≤ K1{Mα−α

2},

which gives, through integration along characteristic,

dα

(M −α)α
≤ K1 dt

=⇒
1
M

ln
α(t)

M −α(t)
≤

1
M

ln
α(t2)

M −α(t2)
+K1(t − t2).

As t → t1−, the left-hand side approaches infinity while the right-hand side ap-
proaches a finite number, which gives a contradiction. Hence, we prove that (2.6)
is correct, that is, α and β are uniformly bounded above. Then, by the conserva-
tion of mass (1.6) and (2.4), we have (2.9), and then (2.7), which directly gives
(2.8). Hence, we complete the proof of Theorem 2.1. ❐

Remark 3.3. Theorem 2.1 can be extended to the case with general pressure
law p = p(τ) with pτ < 0, pττ > 0, and some other suitable conditions on p.
We leave this to the reader, referring him to [6] for the Riccati equations and the
definitions of α and β. For full Euler equations, the extension of Theorem 2.3 to
general pressure law is still not available because the current result on the uniform
upper bound of density is only available for γ-law pressure.

4. FULL COMPRESSIBLE EULER EQUATIONS

4.1. Equations and coordinates. We first introduce some notation and
existing equations for C1 solutions of full Euler equations (1.1)–(1.4). Recall we
use new variables m and η to take the roles of S and τ, respectively:

m = eS/(2cv )(4.1)
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and

η =
2
√
Kγ

γ − 1
τ−(γ−1)/2.(4.2)

Without confusion, we still use c to denote the nonlinear Lagrangian wave speed
for full Euler equations, where

c =
√
−pτ =

√
Kγτ−(γ+1)/2eS/(2cv ).

The forward and backward characteristics are described by

dx

dt
= c and

dx

dt
= −c,

and we denote the corresponding directional derivatives along these characteristics
by

∂+ :=
∂

∂t
+ c

∂

∂x
and ∂− :=

∂

∂t
− c

∂

∂x
,

respectively.
It follows that

τ = Kτη
−2/(γ−1),

p = Kpm
2η2γ/(γ−1),

c = c(η,m) = Kcmη
(γ+1)/(γ−1),

with positive constants

Kτ :=

(
2
√
Kγ

γ − 1

)2/(γ−1)

,

Kp := KK−γτ , Kc :=
√
KγK

−(γ+1)/2
τ ,(4.3)

so that also

Kp =
γ − 1

2γ
Kc and KτKc =

γ − 1
2

.

In these coordinates, for C1 solutions, equations (1.1)–(1.4) are equivalent to

ηt +
c

m
ux = 0,(4.4)

ut +mcηx + 2
p

m
mx = 0,(4.5)

mt = 0,(4.6)
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where the last equation comes from (1.5), which is equivalent to (1.3) (cf. [16]).
Note that, while the solution remains C1, m = m(x) is given by the initial data
and can be regarded as a stationary quantity.

Recall that we denote the Riemann invariants by

r := u−mη and s := u+mη.

Different from the isentropic case (m constant), for general non-isentropic flow,
s and r vary along characteristics. Also recall that we denote gradient variables

α = ux +mηx +
γ − 1
γ

mxη,(4.7)

β = ux −mηx −
γ − 1
γ

mxη,(4.8)

which satisfy the following Riccati equations. (See the detailed derivation in [2].)

Proposition 4.1 ([2]). The classical solutions for (1.1)–(1.3) satisfy

∂+α = k1{k2(3α+ β)+ αβ−α2},(4.9)

and

∂−β = k1{−k2(α+ 3β)+αβ− β2},(4.10)

where

k1 =
(γ + 1)Kc
2(γ − 1)

η2/(γ−1), k2 =
γ − 1

γ(γ + 1)
ηmx .

Proposition 3.1 is in fact a corollary of Proposition 4.1 for the isentropic case
in which mx ≡ 0.

4.2. Uniform upper bound on density. In this part, we review a result on
the uniform upper bounds of |u| and ρ established by the author, R. Young, and
Q. Zhang in [7], for later references.

In this section, we always assume all initial conditions in Theorem 2.3 are
satisfied. This means that

V :=
1

2cv

∫ +∞

−∞
|S′(x)|dx =

∫ +∞

−∞

|m′(x)|

m(x)
dx < ∞,

while also, by (4.1), we have 0 < ML < m(·) < MU for some constants ML and
MU . Also, there exist positive constants Ms and Mr such that, in the initial data,
|s(·,0)| < Ms and |r(·,0)| < Mr .

In the following proposition established in [7], |u| and ρ are shown to be
uniformly bounded above.
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Proposition 4.2 ([7]). Assume all initial conditions in Theorem 2.3 are satisfied,
and assume system (1.1)–(1.4) has a C1 solution when t ∈ [0, T ). Then, one has the
uniform bounds

|u(x, t)| ≤
L1 + L2

2
MU

1/(2γ) and η(x, t) ≤
L1 + L2

2
ML

1/(2γ)−1,

where

L1 :=Ms + V̄Mr + V̄ (V̄Ms + V̄
2Mr )e

V̄ 2
,

L2 :=Mr + V̄Ms + V̄ (V̄Mr + V̄
2Ms)e

V̄ 2
,

and

V̄ :=
V

2γ
.

Constants L1 and L2 both clearly depend only on the initial data and γ. Here, T can
be any positive number or infinity; the bounds are independent of T .

4.3. Proof of Theorem 2.3. Similar to Theorem 2.1 for the p-system, the
key idea is still to get the uniform upper bound of some gradient variables mea-
suring rarefaction.

However, we cannot directly get the uniform upper bound of α and β. In
fact, in comparison to (3.2)–(3.3), equations (4.9)–(4.10) include some first-order
terms in the right-hand side. In order to cope with these, we introduce some new
gradient variables

(4.11) αε = η
2ε/(γ−1)α and βε = η

2ε/(γ−1)β.

Using (4.4), we have

∂+η = ηt + cηx = −
c

m
ux + cηx

= −Kcη
(γ+1)/(γ−1)β−

γ − 1
γ

Kcη
2γ/(γ−1)mx

and

∂−η = ηt − cηx = −
c

m
ux − cηx

= −Kcη
(γ+1)/(γ−1)α+

γ − 1
γ

Kcη
2γ/(γ−1)mx .

Then, it is easy to prove the next lemma by Proposition 4.1.

Lemma 4.3. The classical solutions in (1.1)–(1.3) satisfy

∂+αε = k1ε

{
k2ε(3αε − 4εαε + βε)+

(
1−

4ε
γ + 1

)
αεβε −α

2
ε

}
(4.12)
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and

∂−βε = k1ε

{
−k2ε(αε + 3βε − 4εβε)+

(
1−

4ε
γ + 1

)
αεβε − β

2
ε

}
,

where

k1ε =
(γ + 1)Kc
2(γ − 1)

η(2/(γ−1))(1−ε),

k2ε =
γ − 1

γ(γ + 1)
η1+(2/γ−1)εmx

and

(4.13) 0 < ε <
1
4
.

Note that, for any C1 solutions in (x, t) ∈ R× [0, T ) satisfying initial condi-
tions in Theorem 2.3, using Proposition 4.2, for any ε satisfying (4.13), we know
|k1ε(x, t)| and |k2ε(x, t)| are both uniformly bounded above:

(4.14) |k1ε(x, t)| < K̂1 and |k2ε(x, t)| < K̂2,

where constants K̂1 and K̂2 only depend on initial conditions and γ, but are inde-
pendent of ε.

Next, we give the key lemma, which will be proved later.

Lemma 4.4. Suppose the initial conditions in Theorem 2.3 are satisfied. For any
ε satisfying (4.13), let N be an upper bound of αε(x,0) and βε(x,0), that is,

max
x∈R

{αε(x,0), βε(x,0)} < N,

where the constant N also satisfies

(4.15) N > max

{
4(γ + 1)K̂2

ε
,

2K̂2

1− 4ε/(γ + 1)

}
.

Then,
max

(x,t)∈R×[0,T)
{αε(x, t), βε(x, t)} < N.

Proof of Theorem 2.3. We only need show Lemma 4.4. In fact, if Lemma 4.4
is proved, then by the conservation of mass (1.1) and definitions of αε and βε in
(4.11) and (4.7)–(4.8), we have

η2ε/(γ−1)τt = η
2ε/(γ−1)ux =

1
2
(αε + βε) < N,
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which gives that, by (4.2), τ = 1/ρ, and the fact that the initial density has
positive lower bound, there exist positive constants N1 and N2 such that

ρ >

(
N1

N2 + t

)1+δ

where δ =
ε

1− ε
.

Then, it is easy to see that all results in Theorem 2.3 are correct.
We now prove Lemma 4.4 by contradiction. We still use Figure 3.2. Without

loss of generality, assume that αε(x0, t0) = N, at some point (x0, t0).
Because wave speed c is bounded above, we can find the characteristic triangle

with vertex (x0, t0) and lower boundary on the initial line t = 0, denoted by Ω.
Then, we can find the first time t1 such that αε = N or βε = N in Ω. More

precisely,

max
(x,t)∈Ω, t<t1

(αε(x, t), βε(x, t)) < N,

and αε(x1, t1) = N and/or βε(x1, t1) = N for some (x1, t1) ∈ Ω. Without loss
of generality, still assume αε(x1, t1) = N. The proof for the other case is entirely
the same. Let us denote the characteristic triangle with vertex (x1, t1) as Ω1 ∈ Ω;
then,

max
(x,t)∈Ω1, t<t1

(αε(x, t), βε(x, t)) < N,

and αε(x1, t1) = N.
We then divide the problem into two cases:

(I) N ≥ βε(x1, t1) > −N/2;
(II) βε(x1, t1) ≤ −N/2.

In case (I), by the continuity of αε and βε and our construction, we can find a
time t2 ∈ [0, t1) such that

(4.16)
N

2
< αε(x, t) < N and |βε| < N, ∀ (x, t) ∈ Ω1 and t2 ≤ t < t1.

Then, using (4.12), (4.14), (4.15), and (4.16), along the forward characteristic
segment through (x1, t1), when t2 ≤ t < t1, we have

∂+αε ≤ k1ε

(
1−

4ε
γ + 1

)
(αεβε −α

2
ε) ≤ K̃1(Nαε −α

2
ε)

with

K̃1 ≐ K̂1

(
1−

4ε
γ + 1

)
,
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which gives, through integration along characteristic,

dαε

(N −αε)αε
≤ K̃1 dt

=⇒
1
N

ln
αε(t)

N −αε(t)
≤

1
N

ln
αε(t2)

N −αε(t2)
+ K̃1(t − t2).

As t → t1−, the left-hand side approaches infinity while the right-hand side ap-
proaches a finite number, which gives a contradiction.

In case (II), by the continuity of αε, we could find a time t3 ∈ [0, t1) such that

(4.17)
N

2
< αε(x, t) < N and βε(x, t) < −

N

4
,

for any (x, t) ∈ Ω1 and t3 ≤ t < t1, which gives, by (4.15),

(
k2ε +

(
1−

4ε
γ + 1

)
αε

)
βε < 0.

Hence, by (4.15), (4.13), and (4.17), we have

∂+αε < k1ε{k2ε(3− 4ε)αε −α2
ε} < 0.

As a consequence, αε decreases on t along the forward characteristic line through
(x1, t1), when t3 ≤ t < t1, which contradicts the idea that αε(x1, t1) = N while
αε(x, t) < N when (x, t) ∈ Ω1 and t3 ≤ t < t1. Hence, Lemma 4.4 is proved,
and this completes the proof of Theorem 2.3. ❐
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